
August 1999

CADD/GIS Technology Center

Environmental Restoration Program
Information Management System(ERPIMS)/
Spatial Data Standards(SDS)
Translator Concept Model
Delivery Order No. 23
Contract No. DACW39-96-D-0017

By Barry Schimpf
Upper 90 Systems, Inc
On behalf of Michael Baker Corporation

Project – FCAD2 Program - Integration of Existing Databases

Prepared for U.S. Army Engineer Waterways Experiment Station
3909 Halls Ferry Road, Vicksburg, MS 39180-6199

August 1999

Environmental Restoration Program
Information Management System(ERPIMS)/
Spatial Data Standards(SDS)
Translator Concept Model
Delivery Order No. 23
Contract No. DACW39-96-D-0017

by Barry Schimpf

Upper 90 Systems, Inc

On behalf of
Michael Baker Corporation
420 Rouser Road
Airport Office Park
Coraopolis, PA 15108

Project – FCAD2 Program - Integration of Existing Databases

Prepared for U.S. Army Engineer Waterways Experiment Station
3909 Halls Ferry Road, Vicksburg, MS 39180-6199

Contents i

Contents

1 Overview/Background ... 1

Spatial Data Standards (SDS) Development .. 1

Environmental Restoration Program Information Management System (ERPIMS) .. 1

Purpose... 1

2 Concepts/Issues... 3

Data Types.. 3

Dates and Times ... 4

Constraints ... 4

List Domains... 5

Relationships .. 5

3 The Approach ... 7

Selecting a Platform ... 7

Beginning the Process .. 8

Pre-Translation Analysis .. 8

Moving Data... 9

4 Summary ... 11

The Prototype ... 11

Appendix A – ODBC Data Types ... A1

Appendix B – SDS/FMS Generator...B1

1 Overview/Background 1

1 Overview/Background

Spatial Data Standards (SDS) Development

The CADD/GIS Technology Center is responsible for maintenance and distribution of the Spatial Data
Standards (GIS) (SDS). In August of 1995, the CADD/GIS Technology Center published Release 1.400
of the TSSDS in electronic format. Release 1.600 of the TSSDS was published in November 1996.
Release 1.700 of the TSSDS was published and distributed at the August 1997 Tri-Service
CADD/GIS/FM Symposium in St. Louis, MO. Release 1.800 of the TSSDS, the first release of the
TSSDS/TSFMS, was published in February 1999.

Beginning at the end of 1999, the TSSDS/TSFMS will be known as the Spatial Data Standards/Facility
Management Standards (SDS/FMS). This change will coincide with additional integration of other
associated Department of Defense and Federal Agency standards into the SDS/FMS. Since the
SDS/FMS is a "physical" implementation, it is possible to consider "automated" translation of existing
department/ agency data to, and from, the SDS/FMS schema. This project begins to address the issues
which surround these translations and what software aids may be exploited in today's technology to assist
with these translations.

Environmental Restoration Program Information Management System
(ERPIMS)

The Environmental Restoration Program Information Management System (ERPIMS) is used extensively
by the Air Force to organize and retain electronic information regarding environmental restorations. It is
fundamentally Oracle® Relational Database Management System (RDBMS) based. Development and
continuing configuration management of ERPIMS is performed at the Air Force Center for
Environmental Excellence (AFCEE), located at Brooks AFB, Texas. Many of the ERPIMS data
structures and attributes were incorporated into Release 1.800 of the TSSDS/TSFMS. Additional
attributes are being included in the development of Release 1.900 of the SDS/FMS, currently scheduled
for distribution at the beginning of 2000. While the ERPIMS consists of a robust physical relational
model, only several tables will be used for the prototype effort.

Purpose

The purpose of this document is to [1] outline the interests of the CADD/GIS Technology Center in
converting data to, and from, their spatial data standards, [2] discuss the conceptual and technological
issues surrounding these conversions, [3] outline an approach to adequately address these issues, and [4]
specify a software framework to implement the approach.

The CADD/GIS Technology Center is tasked with investigating the needs of their user community with
respect to organizing spatial data within the limits of current technology. In general, these include
"attaching" a relational database to some sort of spatial topology representation technique to permit
analysis and display of data which more efficiently conveys information to users. These relational data

1 Overview/Background 2

structures use conventional RDBMS systems to organize information into table and attributes. While the
general implementation of various RDBMS systems is similar, specific organizations vary from vendor to
vendor. For the Spatial Data Standards/Facility Management Standards (SDS/FMS) the current vendor
set includes:

1. Oracle - specifically version Oracle 7.2 and subsequent,
2. Informix - various versions,
3. Microsoft - both SQL Server version 7.0 and subsequent and ACCESS 97 and

subsequent

In addition, the CADD/GIS Technology Center user community has already adopted a series of both
spatial and non-spatial data standards which either have been incorporated into the SDS/FMS or are
likely to be over the course of the next several releases. This situation necessitates at least a preliminary
investigation of an effective approach to moving this data from one data standard, and potentially one
RDBMS, to another.

Defining an effective approach to these translations means developing a thorough understanding of the
issues which confront this standard to standard and/or RDBMS to RDBMS translation. Since many
electronic data storage systems organize and interpret the "one's and zero's" differently, it is necessary to
understand and compensate for these differences. This document will further explore these issues and
begin to develop a baseline which will guide the development of automated tools to assist with these
migrations.

2 - Concepts/Issues 3

2 Concepts/Issues

The investigation of the translation/migration of one data structure to another must begin with an
examination of the concepts of data storage and the issues which surround moving data from one
database to another. The investigation is centered on both the nature of the data structure and the nature
of the implementing software. As the technology of data storage and organization improves, it is less and
less likely that these two areas of investigation can be separated. Therefore, this document assumes [1]
that the source database conforms to a "table" structure where individual attributes are stored in rows (or
records) within these tables and [2] that the RDBMS conforms to the current Open Data Base
Connectivity (ODBC) standards. Making these assumptions is essential to overcoming the local
conventions used by the RDBMS software and relies on the software vendor to make the necessary
transformation.

Data Types

Since the early days of electronic devices, data has been stored as a series of "1's" and "0's". Even the
traditional "punch cards" or "paper tape" of times past used the "1", the hole is punched, or "0", the hole
is not punched. So the data types we speak of today do not refer to the way data is stored. They refer,
instead, to the two things which are of importance to the systems and programs of the electronic storage
industry. The first is "How many 'bytes' are required to store the information?" and the second is "How
will the patterns of '1's' and '0's' be interpreted.?" In this regard, a byte refers to an ordered array of 8
individual "1's" and "0's", known as "bits".

Without getting into a detailed discussion of the differences between ASCII and UNICODE, or the
subtleties of CHAR versus VARCHAR, the important thing to understand is that, when moving data
from one location to another, the data type is critical. Since it controls both the amount of storage
necessary (the number of bytes) and the interpretation of that storage, failure to consider data type
conversions is likely to result in unrecognizable data at the destination. In addition, since vendors use
their own conventions for the determination of data types (particularly for RDBMS systems), it is easier
to use the ODBC data typing conventions to accommodate the differences. In this way, the vendor has
already determined the precise transformation between their own data typing conventions and the ODBC
standard. Appendix A provides an outline of the current ODBC data types with definitions.

The SDS/FMS uses its own "universal" data types. These are designed to simplify the combinations
available and yet provide sufficient capability to handle the vast majority of data storage needs. It is, in
most cases, the responsibility of the Database Administrator (DBA) to ensure proper transformation
between the SDS/FMS data types and the user's database. The SDS/FMS Generator uses it's own
transformations for the various RDBMS, and those transformations are summarized in Appendix B.

What is important is that the translation NOT actually create tables, thereby ensuring that data types are
user controlled. Rather, the translation process should read the data types of the source database and the
data types of the destination database, and make the appropriate translation. The overriding principle in
this process should be to not only ensure the maximum amount of information transfer, but to document

2 - Concepts/Issues 4

those instances where data may have been compromised or lost. This would not only involve reductions
in the sizes of character strings, but loss of precision in numeric values.

Using the ODBC data type transformations ensures the best possible translations of data types. These are
best determined using the standard ODBC "Remote Data Object", which determines the ODBC data type
of the attribute which the vendor has determined best fits their own. This not only makes use of the
vendors own experts for the translations, but ensures that, should the vendor change their data type
conventions, that the new ODBC drivers would continue to reflect these modifications. Therefore, data
type issues are best handled using the common ODBC data type structures. This permits the most
accurate data translations with the greatest quantity of information populating the database.

Dates and Times

Within the SDS/FMS all dates are expressed as INTEGERS (ODBC SQL_INTEGER) in the form
YYYYMMDD. This structure not only ensures consistency and "readability", but allows for accurate
date comparisons of those dates that "precede" or "follow" other dates. It has the added advantage of
being compliant with all Y2K (Year 2000 Compliance) concerns. If we sort a list of SDS/FMS dates in
numerical order, the oldest dates will appear at the top of the list. This can be particularly useful in data
manipulation. Other data systems use a variety of date field possibilities, including an electronic
TIMESTAMP or even a character field. In performing the translation, it is important to consider the date
translations to ensure accuracy of date field information at the other end. There are a number of DATE
functions available to perform these manipulations.

In a similar manner, the SDS/FMS specifies times as INTEGERS (ODBC SQL_INTEGER) in the form
HHMMSS. Again, this structure is both readable as well as easily sorted, with earlier times appearing at
the top of the list. Time conversions can be tricky, particularly for those systems which combine dates
and times into TIMESTAMPs. In addition, the differences between the 24 Hour clock and the use of
AM/PM makes extra caution advisable. Extreme care must be taken to ensure that the time reflected in
the conversion are an accurate representation of the original information stored in the field.

Constraints

The other significant characteristic of relational databases which must be considered in the translation are
constraints. Attribute Constraints, simply stated, limit the values which may be included in the set of
permissible values. Constraints may be as simple as requiring data (NO NULLS) or as complex as
mandatory Foreign Key/Primary Key references. In between are specific limits such as domains. The
translation must take into account as many constraints as possible, to ensure that the data, and the limits
to the data, are properly reflected.

Since the SDS/FMS already imposes a number of constraints itself, the challenge is to integrate the
source database constraints into the SDS/FMS, without compromising the SDS/FMS constraints. These
include Primary Keys, Range Domains, List Domains, and Foreign Keys. Within the SDS/FMS, NO
NULLs are predefined only for the graphic linking attributes, so they are not normally an issue for the
translation process. At the same time, Foreign Keys/Primary Key linkages are a function of the nature of
the relationships within the database and are dealt with in the next section. Range domains are primarily
a constraint on data entry so they normally are not involved in the translation process. However, it is
possible to compare the translated values with the documented Range Domains as a part of the migration,
simply documenting any values which lie outside of the specified range. This leaves the fundamental

2 - Concepts/Issues 5

constraint to be considered during the translation process as List Domains, or the discrete values which
are permissible within the field.

List Domains

The SDS/FMS specifies most List Domains in considerable detail. If the attribute translation is from a
List Domain constrained field to a non-List Domain field, the translation constraints are abandoned. If
the field is from a source List Domain field to a destination List Domain field, it is possible to assign a
"domain conversion" algorithm based on the user's understanding of the definitions/meanings of the
individual values. It is possible that the two constraining domains are not "one for one", requiring greater
involvement from the user in accomplishing the translation. In some cases, it might be necessary NOT to
perform the domain conversion as a part of the translation, but merely to highlight the need for later
review. An even greater problem occurs when a "free form" field is to be converted to a domain field. In
this case, it is necessary to determine the list of unique values in the field, and then determine the
conversions required.

In cases where the source schema (database structure), has been considered in the preparation of the
SDS/FMS schema, these domain conversions should already have been documented. If so, these may be
electronically read and applied. However, if no preliminary comparisons have been performed, it may be
necessary to determine the complete set of conversions either in advance of, or in conjunction with, the
translation. To perform these conversions in conjunction with the translation, greater involvement by
knowledgeable individuals will be required.

Relationships

The single most important issue in the conversion of information in a relational environment is the nature
of the relationships themselves. In fact, it is quite possible that differences between the relationship
organization of the two databases will be such as to prevent any reasonable data translation. If we think
of data tables are referring to the collection of characteristics about an object, the relationships refer to
the real relationships between objects. What makes these relationships particularly meaningful is the
concept of "one to many" relationships.

Let us take the case of samples being taken from a location. If we assume that in both databases sample
and location are tables. If the source database allows for only a single sample at a location and the
destination allows for multiple samples, the transformation is unaffected by the relationships. The
destination database is capable of handling the data. If, on the other hand, the source structures permit
multiples and the destination only permits a single sample, information will be lost. Data regarding those
other samples has no corresponding table location in the destination database. Therefore, it is important
that these structures be examined in determining the optimal translation.

By considering these limitations up front, it is possible to ensure that the relationships are sufficient to
store all of the applicable data. In the case of the ERPIMS to SDS/FMS translation, these relationships
will be examined to ensure that there are no "cardinality" limitations which might otherwise compromise
the translation of the data. The complexity of this examination is a function of the number of tables
involved and the number of relationships which exist between the tables. This analysis requires
individuals who are not only familiar with the data involved but understand the implications of complex
relational structures. The good news is that this analysis is not a function of the contents of the database,
but rather the structure of the database. Consequently, once the analysis has been performed, it need not

2 - Concepts/Issues 6

be repeated solely based on content changes to the database. However, it must be reevaluated should
either the source or the destination schemas change.

3 - Approach 7

3 The Approach

When considering an approach to addressing the issues raised in the previous section, four fundamental
capabilities are required in a platform. These are:

A. Complete Compliance with ODBC Standards
B. Complete compatibility with SQL-92
C. Flexibility of use
D. Easily manipulated by Data Access Objects/Remote Data Objects

Selecting a Platform

All of the RDBMS platforms included in section 1 of this document more or less meet the requirements
expressed above. Looking at the possibilities, the recommended platform is Microsoft Access 97. This
selection is made for three significant reasons.

1 - It's overall cost with respect to the other solutions is considerably reduced. While an activity may
already own Oracle, Informix, or SQL Server, it is unlikely that they would want to make the additional
investment if they did not. Each of these systems, in even minimal configuration, is more than twice the
cost of Microsoft Access 97, and Access is generally available in governmental offices either as a part of
Microsoft Office Professional, or as a standalone add-on. Thus, in nearly all cases, Microsoft Access is
the lowest cost solution.

2 - An easily understandable Graphic User Interface (GUI) front end. The organization of Access Tables
and a user friendly "query builder" make it a logical choice. In many cases, government users will
require little or no additional training to implement translations using Access.

3 - Compatibility with the "Jet" Database Engine which is easily incorporated into Visual Basic or other
application producing visual application developers. While this approach may compromise some speed
as opposed to other techniques, infrequent or "one time" conversions probably don't require anything
approaching "real time".

The general approach then is to use Access as the linking vehicle for conversion of the data, handling the
action queries which
do the transformation
within Access, while
linking to the ODBC
compliant source and
destination databases.
This approach is
graphically depicted
at right.

3 - Approach 8

Beginning the Process

The first step in the transformation is to determine precisely what must be translated. While this may
seem obvious on the surface, it is always advisable to determine the contents of what is being translated.
Under normal circumstances, this begins with determining the set or collection of tables which constitute
the source database. This will generally be a subset of the entire database. Once this collection has been
defined, these tables should be examined to determine what is included within these tables.

One of the postulates of data migration is "never worry about things that aren't there". Many relational
databases have attributes which are, simply stated, empty; e.g. no data has been entered and the fields are
NULL. Or it is even possible that the tables themselves are empty. It saves a lot of time, and later effort,
to make this determination now rather than waiting and attempting to accommodate all transformations
even though they are NULL.

While the process of determining the record counts and number of NOT NULL records is tedious
manually, it is relatively simple using code since the structure of the SQL Statements is uniform
throughout. To determine the records in a table use:

SELECT COUNT(*) FROM [TABLE NAME];

This query is performed quickly and returns the number of records in "TABLE NAME". If the result is
0, the table is empty and can be ignored; e.g. no data is present to convert.

In a similar manner, individual fields can be examined by using another SQL Statement. To determine
the number of records in an attribute within a table containing data, use:

SELECT COUNT(*) FROM [TABLE NAME] WHERE [ATTRIBUTE NAME] IS NOT NULL;

Even if a table has records, obtaining zero as a result to the above query means there is no data contained
within this attribute in any of the table's records. Thus, no conversion is required and the attribute may
be ignored.

Consequently, by reading the tables and attributes in the source database, and running the queries
indicated above, it is possible to determine the precise set of tables and attributes which must be
translated. In some cases, performing this analysis up front will significantly reduce the time and
complexity of the translation, particularly if no conversion analysis has been performed in advance.

NOTE: It is possible that data contained in the source table may be required to be split into more than
one table based on some other value. This may be particularly true in certain spatial data conversions
where the categorization of "features" in one data set may be different from the "features" in another. If
this "splitting" of tables is to be performed, it means that some mechanism for conditionally selecting the
records to migrate must be included in the approach. Standard SQL handles this situation quite well.

Pre-Translation Analysis

Moving data from one table to another is best performed using an "INSERT" action query. Keeping in
mind that the best results from a data type perspective are achieved when the destination table has
already been built, the INSERT query permits selection, conversion, and insertion of data

3 - Approach 9

simultaneously. However, there are several important steps that are required before any data is actually
moved. This involves an examination of the issues outlined in section 2 of this document.

One of the first important steps is to determine whether the insertion of new records will result in
Primary Key problems. Keeping in mind that the fundamental purpose of the Primary Key is to uniquely
identify each and every record in the table, it is critical that [1] destination Primary Keys are NOT
NULL, and [2] that destination Primary Keys are UNIQUE. This means that whichever field is to be
moved to the Primary Key field in the destination, that field must [1] contain data, [2] that is must be
unique within the source table, and [3] that the source values not duplicate any values contained in the
destination table within that field.

Determining that these conditions are met is considerably easier than correcting the problem if they are
not. Again, it is advisable to perform the queries and display the results in advance of any translation
rather than interrupting the migration in process. The Primary Key criteria may not be circumvented.
Loss of Primary Key references jeopardizes JOINS and hinders the ability of users (or applications) to
accurately locate a record. Therefore, this issue must be addressed in advance of any migration.

The second critical step preparatory to the translation is the review of the specific data types. This is
necessary not only to determine whether the destination attribute will accurately accept the data
contained in the source, but what conversion algorithms are required to perform the move. As an
example, the source attribute contains character string data in SQL_CHAR format and the destination
data type is SQL_INTEGER, then the data must be trimmed of trailing spaces and then converted to an
integer. There are Microsoft Access functions to perform all of the required conversions.

At this step of the analysis, before any data has been moved, it is possible to determine whether data is
likely to be compromised or lost. Conditions which might cause this situation include character fields
with reduced character length, or real numbers being converted to integers. The advantage of
documenting these deficiencies up front is that action may be taken in advance of the translation to
analyze the impact of the data loss. It may be possible to compensate for these conditions. It may even
be permissible to just lose the data.

Moving Data

Once the specific data to be migrated has been determined and the conversions/changes in that data have
been identified, it is time to actually move the data. Within Microsoft Access 97, this is performed using
the INSERT query. This means that both tables (source and destination) must be "attached" to the
"Translation" Access Database. This can be done manually or through the use of code. To see the way
this is accomplished in Access 97, perform the following steps:

1 - Create an Empty Database
2 - From the Menu - select [File|Get External Data|Link Tables]
3 - At the Link Dialog - select "Files of Type" - ODBC Databases() [Usually at the bottom]
4 - Select the ODBC Data Source, providing Password Information if Required
5 - Select the Table or Tables from the List (The Table Names may be preceded by the Owner)
6 - Select the Unique Field as a Primary Key if requested.

At this point, the Table will be linked to Microsoft Access 97 and may be manipulated just like any other
table; e.g. it may be used in queries or viewed. NOTE: Since Access does not control the structure of

3 - Approach 10

the table, it will not be possible to alter the structure of the table. This same restriction is true of any
"linked" table in Microsoft Access.

In this same way, it is possible to "link" all of the required source tables and all of the required
destination tables into the Translation Database. This can be done either manually one at a time, or
through the use of the Microsoft Data Access Objects (DAO) within Visual Basic, Access Basic, or even
C. These table can then be included directly into the INSERT queries for the destination database. In
general, the format of these INSERT queries (Access calls them APPEND queries) for SQL appears as:

INSERT INTO [DESTINATION TABLE NAME]
([DESTINTATION ATTRIBUTE NAME ONE],

[DESTINATION ATTRIBUTE NAME TWO] …)

SELECT [SOURCE ATTRIBUTE NAME ONE],
[SOURCE ATTRIBUTE NAME TWO] …

FROM [SOURCE TABLE NAME];

Any simple transformations can be performed simultaneously with the query. Microsoft offers great
flexibility to perform transformation functions as a part of these queries. If the required conversions are
very complex, then the Microsoft Access Database itself may serve to store a working copy of the data.
In these cases, a copy of the data table, modified to reflect the optimum format, is created inside of
Access. Again, this can be accomplished using the DAO code. This copy is then modified as required
and then "APPENDED" to the destination table using the same format of INSERT SQL query.

Using this approach, nearly any conversion may be accomplished. At the same time, it is possible to
count records to ensure that the destination database has been properly populated. It is also possible to
use a variety of UPDATE queries to modify List Domain Values to reflect any domain value changes
required as a part of the migration.

The approach may be validated manually, individually connecting or linking tables, and then creating and
executing the queries. This technique, while valid, is tedious and time consuming. It is possible,
however, to create code which will perform many of the mundane tasks such as documenting the source
and destination tables, examining the data type conversions required, connecting or linking the required
tables, and creating the executing the queries. Thus, with a little bit of "up front" work in analysis and
determining the actions to take place, it may even be possible to perform the migration without user
intervention.

4 - Summary 11

4 Summary

Given that the approach is feasible and has been demonstrated in a test mode, the next step is to select a
prototype target conversion/translation, develop some prototype code to assist with tasks which can be
easily automated, analyze the requirements of the prototype conversion, and actually demonstrate the
ability to automate a conversion from the source database to the target database.

The Prototype

The Prototype selected for the project is ERPIMS. As has already been indicated, ERPIMS has been
examined for preliminary inclusion into Release 1.800 of the TSSDS/TSFMS and is being revised based
on the latest documentation for completion in Release 1.900 of the SDS/FMS. The specific tables within
the ERPIMS for conversion are currently being selected. Once that has been completed, an analysis will
be performed to determine the adequacy of the comparable SDS/FMS data structure to completely meet
the required data storage needs.

At the same time, prototype code will be developed in Visual Basic to begin to identify the ability of
code to perform the tasks outlined in the previous section. The culmination of this effort will be a
demonstration to convert real ERPIMS data into the comparable SDS/FMS structures, considering and
compensating for all of the issues which surround this conversion.

It is anticipated that this demonstration may take place as soon as late September or early October of this
year, with a more robust software Translation tool available before the end of the year. Work has already
begun to identify the "classes" of translations necessary to perform the demonstration. Once the
preliminary target has been identified, it should only be a matter of weeks until the complete set of
translation algorithms have been defined.

Appendix A - ODBC Data Types A1

Appendix A – ODBC Data Types

Attached is a table of the currently specified ODBC Data Types:

ODBC Type Identifier [1] Typical SQL Data
Type

Typical type description

SQL_CHAR CHAR(n) Character string of fixed string length n.

SQL_VARCHAR VARCHAR(n) Variable-length character string with a
maximum string length n.

SQL_LONGVARCHAR LONG VARCHAR Variable length character data. Maximum length
is data source–dependent. [9]

SQL_DECIMAL DECIMAL(p,s) Signed, exact, numeric value with a precision of
at least p and scale s. (The maximum precision
is driver-defined.)
(1 <= p <= 15; s <= p). [4]

SQL_NUMERIC NUMERIC(p,s) Signed, exact, numeric value with a precision p
and scale s
(1 <= p <= 15; s <= p). [4]

SQL_SMALLINT SMALLINT Exact numeric value with precision 5 and scale
0 (signed: –32,768 <= n <= 32,767, unsigned:
0<= n <= 65,535) [3] .

SQL_INTEGER INTEGER Exact numeric value with precision 10 and scale
0 (signed: –2[31] <= n <= 2[31] – 1, unsigned: 0
<= n <= 2[32] – 1) [3] .

SQL_REAL REAL Signed, approximate, numeric value with a
binary precision 24 (zero or absolute value 10[–
38] to 10[38]).

SQL_FLOAT FLOAT(p) Signed, approximate, numeric value with a
binary precision of at least p. (The maximum
precision is driver-defined.) [5]

SQL_DOUBLE DOUBLE
PRECISION

Signed, approximate, numeric value with a
binary precision 53 (zero or absolute value 10[–
308] to 10[308]).

SQL_BIT BIT Single bit binary data. [8]

Appendix A - ODBC Data Types A2

SQL_TINYINT TINYINT Exact numeric value with precision 3 and scale
0 (signed: –128 <= n <= 127, unsigned: 0<= n
<= 255) [3] .

SQL_BIGINT BIGINT Exact numeric value with precision 19 (if
signed) or 20 (if unsigned) and scale 0 (signed:
–2[63] <= n <= 2[63] – 1, unsigned: 0 <= n <=
2[64] – 1) [3], [9].

SQL_BINARY BINARY(n) Binary data of fixed length n. [9]

SQL_VARBINARY VARBINARY(n) Variable length binary data of maximum length
n. The maximum is set by the user. [9]

SQL_LONGVARBINARY LONG
VARBINARY

Variable length binary data. Maximum length is
data source–dependent. [9]

SQL_TYPE_DATE [6] DATE Year, month, and day fields, conforming to the
rules of the Gregorian calendar (see
“Constraints of the Gregorian Calendar” later in
this appendix).

SQL_TYPE_TIME [6] TIME(p) Hour, minute, and second fields, with valid
values for hours of 00 to 23, valid values for
minutes of 00 to 59, and valid values for
seconds of 00 to 61. Precision p indicates the
seconds precision.

SQL_TYPE_TIMESTAMP
[6]

TIMESTAMP(p) Year, month, day, hour, minute, and second
fields, with valid values as defined for the
DATE and TIME data types.

SQL_INTERVAL_
MONTH [7]

INTERVAL
MONTH(p)

Number of months between two dates; p is the
interval leading precision.

SQL_INTERVAL_YEAR [7] INTERVAL
YEAR(p)

Number of years between two dates; p is the
interval leading precision.

SQL_INTERVAL_YEAR_
TO_MONTH [7]

INTERVAL
YEAR(p) TO
MONTH

Number of years and months between two
dates; p is the interval leading precision.

SQL_INTERVAL_DAY [7] INTERVAL
DAY(p)

Number of days between two dates; p is the
interval leading precision.

SQL_INTERVAL_HOUR [7] INTERVAL
HOUR(p)

Number of hours between two date/times; p is
the interval leading precision.

SQL_INTERVAL_
MINUTE [7]

INTERVAL
MINUTE(p)

Number of minutes between two date/times; p is
the interval leading precision.

SQL_INTERVAL_
SECOND [7]

INTERVAL
SECOND(p,q)

Number of seconds between two date/times; p is
the interval leading precision and q is the
interval seconds precision.

Appendix A - ODBC Data Types A3

SQL_INTERVAL_DAY_
TO_HOUR [7]

INTERVAL
DAY(p) TO HOUR

Number of days/hours between two date/times;
p is the interval leading precision.

SQL_INTERVAL_DAY_
TO_MINUTE [7]

INTERVAL
DAY(p) TO
MINUTE

Number of days/hours/minutes between two
date/times; p is the interval leading precision.

SQL_INTERVAL_DAY_
TO_SECOND [7]

INTERVAL
DAY(p) TO
SECOND(q)

Number of days/hours/minutes/seconds between
two date/times; p is the interval leading
precision and q is the interval seconds precision.

SQL_INTERVAL_HOUR_
TO_MINUTE [7]

INTERVAL
HOUR(p) TO
MINUTE

Number of hours/minutes between two
date/times; p is the interval leading precision.

SQL_INTERVAL_HOUR_
TO_SECOND [7]

INTERVAL
HOUR(p) TO
SECOND(q)

Number of hours/minutes/seconds between two
date/times; p is the interval leading precision
and q is the interval seconds precision.

SQL_INTERVAL_
MINUTE_TO_SECOND [7]

INTERVAL
MINUTE(p) TO
SECOND(q)

Number of minutes/seconds between two
date/times; p is the interval leading precision
and q is the interval seconds precision.

[1] This is the value returned in the DATA_TYPE column by a call to SQLGetTypeInfo.
[2] This is the value returned in the NAME and CREATE PARAMS column by a call to SQLGetTypeInfo. The

NAME column returns the designation; for example, CHAR, while the CREATE PARAMS column returns a
comma-separated list of creation parameters such as precision, scale, and length.

[3] An application uses SQLGetTypeInfo or SQLColAttribute to determine if a particular data type or a
particular column in a result set is unsigned.

[4] SQL_DECIMAL and SQL_NUMERIC data types differ only in their precision. The precision of a
DECIMAL(p,s) is an implementation-defined decimal precision that is no less than p, while the precision of a
NUMERIC(p,s) is exactly equal to p.

[5] Depending on the implementation, the precision of SQL_FLOAT can be either 24 or 53: if it is 24, the
SQL_FLOAT data type is the same as SQL_REAL, if it is 53, the SQL_FLOAT data type is the same as
SQL_DOUBLE.

[6] In ODBC 3.0, the SQL date, time, and timestamp data types are SQL_TYPE_DATE, SQL_TYPE_TIME,
and SQL_TYPE_TIMESTAMP, respectively; in ODBC 2.x, the data types are SQL_DATE, SQL_TIME, and
SQL_TIMESTAMP.

[7] For more information on the interval SQL data types, see the “Interval Data Types” section later in this
appendix.

[8] The SQL_BIT data type has different characteristics than the BIT type in SQL-92.
[9] This data type has no corresponding data type in SQL-92.

Appendix B – SDS/FMS Generator Type Conversions B1

Appendix B – SDS/FMS Generator

The following is a list of SDS/FMS Generator transformations made during the SQL Generation
process. These transformations convert the SDS/FMS "Universal" data types to the individual RDBMS
data types.

RIS Conversions
SDS/FMS Data Type RIS Data Type

C - Character VARCHAR
R - Real REAL

I - Integer INTEGER
S - Short Integer SMALLINT

D - Double DOUBLE

Informix Conversions
SDS/FMS Data Type Informix Data Type

C - Character VARCHAR
R - Real SMALLFLOAT

I - Integer INTEGER
S - Short Integer SMALLINT

D - Double FLOAT

Oracle Conversions
SDS/FMS Data Type Oracle Data Type

C - Character VARCHAR2
R - Real REAL

I - Integer NUMBER (10,0)
S - Short Integer NUMBER (5,0)

D - Double NUMBER

SQL Server Conversions
SDS/FMS Data Type SQL Server Data Type

C - Character VARCHAR
R - Real FLOAT

I - Integer INTEGER
S - Short Integer SMALLINT

D - Double REAL

Access Conversions
SDS/FMS Data Type Access Data Type

C - Character Text
R - Real Number (Single)

I - Integer Number (Long Integer)
S - Short Integer Number (Short Integer)

D - Double Number (Double)

	Title and Cover
	Contents
	1 Overview/Background
	SDS Development
	ERPIMS
	Purpose

	2 Concepts/Issues
	Data Types
	Dates and Times
	Constraints
	List Domains
	Relationships

	3 The Approach
	Selecting a Platform
	Beginning the Process
	Pre-Translation Analysis
	Moving Data

	4 Summary
	The Prototype

	Appendix A
	Appendix B

